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P L A N A R  ELASTIC P R O B L E M  F O R  AN O R T H O T R O P I C  P L A N E  W I T H  A SLIT 

U N D E R  E D G E  C O N T A C T  C O N D I T I O N S  OF T H E  T Y P E  OF V I S C O U S  F R I C T I O N  

Yu. A. Bogan UDC 539.3 

A system of hypersingular equations for the title problem is constructed. Qualitative properties 
of the solution of this system are discussed. 

In t roduc t ion .  Previously [1], we studied the problem of longitudinal shear of a plane having a slit 
filled with a material with low shear compliance. In the present paper, a similar elastic problem is considered. 
Here, in contrast to the antiplane problem, two versions of conjugation conditions at the edges of the slit exist: 
1) the shear stress is proportional to the jump in tangential displacement; 2) the normal stress is proportional 
to the jump in normal displacement. Conjugation conditions of this kind arise in the theory of elasticity in 
solving the problem of contact of two domains with a thin interlayer whose coefficient of elasticity is much 
larger than those of the embedding medium (see, for instance, [2]). The conjugation problems considered are 
reduced to systems of hypersingular equations. It is shown that they coincide with accuracy to coefficients 
with the system derived in [1] and admit the same analysis. 

1. We consider the first version. We write the Hooke's law for an orthotropic material as 

Oul Ou2 OUl d Ou2 OUl Ou2 
= d12--~-- x + 22 0 ' O'12 0-11 = d l l - ~ -  x -~- d12 ~ y  , 0-22 = ' + - -  

y Oy Ox 

It is assumed that the matrix of elastic constants is positive-definite: dll > 0, d22 > 0, and dlld22 - d212 > 0. 
The stresses and coefficients in the Hooke's law are dimensionless and are normalized to the shear modulus 
and ul and u2 are the displacements. Let the slit lie on the straight line y = 0 and occupy the interval ( - a ,  a) 
on the x axis, R 2 be the lower half-plane y < 0, and R~_ be the upper half-plane y > 0. We specify conjugation 
conditions for the half-planes.in the form 

[u2] = 0 ,  [0-25]=0, y = + 0 ;  (1) 

l u l l  = 0, [0-12] = 0, y ---- i 0 ,  IX[ > a;  (2) 

0-12(x, +0) = k[ul](x, +0) + f(x) ,  Ixl <~ a; (3) 

0-12(x,-0) = k[ul ] (x , -0) ,  Ixl a. (4) 

Here the function f(x) is known and it models the action of surface forces on the slit; square brackets designate 
a jump in the function. The coefficient k is specified and positive, and it is called the viscosity coefficient. 

We explain in detail the physical meaning of conditions (3) and (4). From the physical viewpoint, it 
is assumed that the slit is filled with an elastic material with a low Young's modulus, the thickness of the 
slit and the Young's modulus being comparable in order of magnitude. For the Laplace equation (steady 
heat conduction), a similar problem was studied by Sanchez-Palencia [3]. From the mechanical viewpoint, 
conditions (3) and (4) imply that the variation of the solution along the x coordinate is negligible compared 
to that along the y coordinate. However, this is not a unique situation where similar conditions can arise. For 
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example, if we assume that the slit is filled with a large number of microslits and perform averaging over the 
number of microslits, we also arrive at conditions of type (3) and (4). 

We reduce the elastic problem with boundary conditions (1)-(4) to a system of integral equations using 
explicit elastic solutions for the displacements specified at the boundary for the upper and lower half-planes, 
respectively. The functions specified on the boundary will be called densities. We use conjugation conditions 
(1)-(4) to obtain a system of integral equations for the densities. We introduce the following integral operators 
(analogs of the potentials of the single and double layers for the Laplace equation): 

+ooj dt, X2(f ,  Ay) = ~/oo 1 [ f ( t )Ay  1 f ( t ) ( x  -- t) 
Xl (f, Ay) = ~ (X -- t) 2 + ~2y2 ~ (X -- t) 2 + A2y 2 dr. 

--~ --OO 

Let 71 = (1 + dl2)/(dll - A21) and 72 = (1 + d12)/(dH - ~2). Here A1 and ~2 are positive roots of the equation 
d22 A4 - (dlld22 - d~2 - 2d12)A 2 + dll = O. 

Let displacements be specified for y = +0: ul(z ,  +0) = f~(x) and u2(x, +0) = f2(x). In this case, the 
elastic solution in the upper half-plane is given by the formulas 

u](x, y) = 71 X l ( f l ,  )~ly) "/2 Xl ( f l ,  )~2y) + 717---" 2---2 [X2(f2, )tly) - -  X2(f2, ~2Y)], 
71 --72 71 --72 71 --72 

ul(x,  Y) -- 1 -~ - - - [X2( f l ,  )~lY) -- X2(fl ,  )~2Y) + 71Xl (f2, ~2Y) -- 72Xl (f2,)~1Y)]- 
71 -- 72 

We set Ul(X, -0)  = f3(x) and u2(x , -0 )  = f4(x). The solution in the lower half-plane has the form 

Zt2(X, y) = "/'1 [ - -Xl ( f3 , /~ lY)  + 72X2( f4 ,  ~lY)] 
71 -- 72 

uZ(x,y) - 1-----~--[:K2(f3, ~ l y ) -  X2(f3, A2y)] + 
71 - 72 

")'2 [ - - ~ l ( f 3 ,  ) ~ 2 Y )  + 7 1 ~ 2 ( f 4 ,  )~2Y)], 
71 -- 72 

1 
[72Xl(.f4, ~lY) - -  7 1 ~ 2 ( f 4 ,  ~2Y)]- 

71 -- 72 

The superscripts 1 and 2 refer to the upper and lower half-planes, respectively. It follows from (1) that f2 = f4 
and since [a22] = 0, for any real x we have 

+co 
[ f2(t_) + f4(t) dt = O. 
J (z  - t) 2 

--OO 

Therefore, it is natural to set of2(t) + f4(t) = 0, whence f2(t) = A( t )  = 0. The absence of a jump in ul and 
~x2 for Ixl > a results in f3(t) and f l ( t )  vanishing for Itl > a. One can easily find that  

= 7 0u21 l ? f l ( t )  Ou I l f l ( t )  dt, - 
Oy ~ (x -- t) 2 Oy ~r J (~ _--~-)2 dt. 

Here l = (71A1-72A2) / (71-72)  = d l l ( )h  + A2)/(d11 + )h~2 ) .  This leads to the following system of 
hypersingular equations for the densities f l  and f3: 

z_ 
*f fl(t_______~) dt = k ( f l (x )  - f3(x)) + f (x ) ,  

--tl 

Subtracting and summing these equations, we obtain 

_ t__ +f f3(t) _ t)2 
--tl 

+f" re(t) (x - t) -------~ dt = 2km(x)  + f(x);  
Rat 

I +f (x - t) 2 dt = f (x) ,  
--a 

- -  dt = k ( f l ( x )  - f3(x)).  

(5) 

(6) 
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where re(x) = f l (x)  - f3(x) and n(x) = f l (x)  + f3(x). The same system (with accuracy to the factor l) 
was constructed in [1]. The integrals in (5) and (6) should be understood as the finite part of a diverging 
Hadamard integral. As shown in [1], Eq. (5) can be reduced to a Fredholm integral equation of the second 
kind and Eq. (6) is solvable in explicit form. In accordance with the results of [1], the solutions of Eqs. (5) 
and (6) for f (x )  E C ~ belong to 61'% Moreover, re(x) and n(x) vanish at the ends of the interval and 
their derivatives can have root singularities for x = =ka. Here C3,a(-a ,  a) is a Banach space of functions 
that have s continuous derivatives, the sth derivative satisfying the Hblder condition with index a ~< 1. For 
small k, Eq. (5) is singularly perturbed and its solution can be obtained by the method of joined asymptotic 
expansions [4]. 

2. We consider another version of the boundary conditions at the edges of the slit. Let 

[Ul] = 0, [o'12] --- 0, o'22(x, q-0) = s[u2] -[- g(x), 0.22(x,-0) --- s[u2], [x[ < a, 

[u2] = 0, [0.22] = 0, IX] > a 

for y ---- 4-0. It is assumed that s > 0. Using the above solutions of the problem for the displacements in the 
upper and lower half-planes, we infer that fl  -- f3 = 0 and f2(z) = f4(x) = 0 for Iz[ > a. Thus, we have the 
following system for the densities fl and f3 in the interval ( - a ,  a): 

d22~ 1 q~a S2(t) +fa f4(t) d t=s[ f2 (x ) -S4 (x ) ] .  j (x--~-)2 dt = s[ f2(x)-  f4(x)] + g(x), d2211 _ _  

Here ll = A1A2(A1 + A2)/(d11 - ~1A2)- This system differs from system (5) and (6) only by the coefficient 
d22ll. 
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